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Advanced Control Strategies for Single-

Gimbal CMG Systems: Design and 

Modelling 
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This paper presents a comprehensive study on the design and implementation of a closed-

loop control system for a Single-Gimbal Control Moment Gyroscope (CMG) system. The 

research involves a multi-faceted approach that combines theoretical modelling, symbolic 

mathematics, and practical implementation to achieve precise control of the CMG system's 

dynamics. The objective is to stabilize the system and control its behaviour effectively. 

I. Nomenclature 

 

𝑞1   = angle (𝑟𝑎𝑑) of the platform  

𝑞1̇   = angular velocity (𝑟𝑎𝑑𝑠−1) of the platform  

𝑞2   = angle (𝑟𝑎𝑑) of the gimbal  

𝑞2̇   = angular velocity (𝑟𝑎𝑑𝑠−1) of the gimbal 

𝜏  = torque (𝑁𝑚) applied to the platform by the gimbal   

𝐽1𝑧   = 0.5 𝑚2 one principal moment of inertia of the platform 

𝐽2𝑥, 𝐽2𝑧   = 0.001 𝑘𝑔𝑚2 two principal moments of inertia of the gimbal 

𝐽3𝑥, 𝐽3𝑦 , 𝐽3𝑧  = 0.01 𝑘𝑔𝑚2 principal moments of inertia of the rotor 

𝑚   = 1.0 𝑘𝑔 the mass of the boom 

𝑟   = 2.0 𝑚 the length of the boom 

𝑔   = 9.81 𝑚𝑠−2 the acceleration of gravity 

𝑣𝑟𝑜𝑡𝑜𝑟    = 500 𝑟𝑎𝑑𝑠−1 angular velocity of the rotor 

II. Introduction 

CMGs2 have long been instrumental in spacecraft attitude control systems, offering exceptional agility and 

manoeuvrability. As spacecraft missions become increasingly ambitious and complex, the demand for more robust 

and efficient CMG systems continues to grow. This paper presents a comprehensive exploration of CMG dynamics, 

emphasizing the connection between theoretical foundations, numerical analysis, and practical implementation. The 

key objectives of this study are to assess the model's performance, evaluate the efficacy of CMGs in general, and draw 

practical conclusions based on in-depth numerical simulations. Through analysis of the simulation results, this 

research endeavours to shed light on the effectiveness of CMGs in spacecraft control applications across a spectrum 

of scenarios. 

 

With a firm grounding in numerical theory, advanced computational techniques, and real-world simulations, this paper 

not only contributes to the understanding of CMG systems but also opens new avenues for optimising their 

performance. The ensuing sections delve into the theoretical framework, model design, simulation methodologies, 

and the rich insights gathered from the data, offering a comprehensive examination of the role of CMGs in spacecraft 

attitude control systems. 

 
1 Aerospace Engineering and Computer Science Double Major, Grainger School of Engineering at UIUC. 
2 Single-Gimbal Control Moment Gyroscope 
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III. Model Design 

A. Physical Model  

Visualising the CMG model will enable more effective analysis by aiding in communicating successes and flaws 

within the code structure. Consider the following physical layout,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The platform possesses the intrinsic capability for unobstructed rotational motion around its foundational axis. This 

inherent pivotal capacity enables the platform to execute continuous, frictionless revolutions, thereby facilitating 

alterations in its angular orientation throughout the entire expanse of its rotational freedom. The gimbal mechanism 

can be actuated by a motor to effectuate rotational movement along an orthogonal axis with respect to the platform. 

Similarly, the rotor can be driven by a motor to spin about another perpendicular axis with respect to the gimbal. 

 

In the context of a high-speed rotor rotation, the application of an "input torque" to the gimbal yields an "output torque" 

imparted onto the platform, as dictated by the fundamental principle of angular momentum conservation. Specifically, 

this output torque serves as a pivotal mechanism for the deliberate alteration of the platform's orientation.  

 

Indeed, this quality is the variable exploited as to control the model. The investigation aims to use numerical analysis 

to quantitatively define operated platform orientation and thereby also establishing its limits. 

 

1. Exploration  

We imagine that the platform is symbolic of a spacecraft. Control is a necessary requirement for active functionality. 

Although numerous options exist to serve this purpose, we look to learn how effective a CMG as a non-propulsive 

actuator is to accomplish this task.  

B. Mathematical Context 

1. Provided EOMs 

The elucidation and regulation of the system's motion are rigorously defined by a system of ODEs3 meticulously 

crafted to provide a comprehensive account of how the system's constituent variables evolve over time. These ODEs 

serve as the foundational framework for characterising the intricate interplay of forces, torques, and inherent physical 

attributes that dictate the system's dynamic trajectory. 

 

𝑞1̈ =
𝑎1 sin(2𝑞2) 𝑞1̇𝑞̇2 + 𝑎2 cos(𝑞2) 𝑞̇2𝑣𝑟𝑜𝑡𝑜𝑟 + 𝑎3 sin(𝑞1)

𝑎4 + 𝑎5 cos2(𝑞2)
 

( 1) 

 
3 ordinary differential equations 

 

Platform 

Gimbal 

Rotor 

Fig.  1 Physical representation of CMG model 
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𝑞2̈ = 𝑎6 sin(2𝑞2) 𝑞1
2̇ + 𝑎7 cos(𝑞2) 𝑞1̇𝑣𝑟𝑜𝑡𝑜𝑟 + 𝑎8𝜏 

( 2) 

Symbolising the respective angular accelerations of the system. Where, 

𝑎1 = −𝐽3𝑦 + 2𝐽3𝑧 

𝑎2 = 2𝐽3𝑦 

𝑎3 = −2𝑔𝑚𝑟 

𝑎4 =  2𝐽1𝑧 + 2𝐽2𝑧 + 2𝑚𝑟2 

𝑎5 = 2𝐽3𝑧  

𝑎6 =
𝐽3𝑦 − 𝐽3𝑧

2(𝐽2𝑥 + 𝐽3𝑥)
 

𝑎7 = −
𝐽3𝑦

𝐽2𝑥 + 𝐽3𝑥

 

𝑎8 =
1

𝐽2𝑥 + 𝐽3𝑥

 

2. Equilibrium Angles 

The primary objective of this investigation is to ascertain the equilibrium state for the model under consideration. This 

can be resolved as the respective angular accelerations being precisely equal to zero justified by Newtons second law 

defining that there are therefore no forces acting on the system. Through analysis of the practical implications of these 

equations, it becomes evident that there exist two distinct equilibrium platform angles that satisfy this requisite 

condition. 

 

Assume the platform angle is some constant. The torque, 𝜏, must be zero for the system to be in equilibrium. Similarly, 

the gimbal must also be centred and unmoving, therefore 𝑞2 must also be zero. As a direct consequence of this 

configuration, the angular velocities associated with the system's components must also converge to zero, given that 

they represent the time derivatives of constants under these equilibrium conditions. Therefore from (1),  

 

𝑞1̈ =
𝑎3 sin(𝑞1)

𝑎4 + 𝑎5

 

Which can only evaluate to zero when 𝑞1 is 0 or 𝜋. It is therefore concluded that the attainable equilibrium points 

exist at these two angles.  

 

VARIABLE  EQUILIBRIUM VALUE  

𝒒𝟏 0, 𝜋 

𝒒𝟏̇ 0 

𝒒𝟐 0 

𝒒𝟐̇ 0 

𝝉 0 

Table 1: Table of equilibrium values for respective variables 
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3. State Space Model 

In the endeavour to design the CMG system, simplifying the given complex equations into a more tractable linear 

state-space model is necessary. This strategic transformation is pivotal, as it paves the way for the application of 

advanced control methodologies, streamlines the process of stability analysis, and facilitates the design of purpose-

built controllers. Converting the intricate dynamics of the CMG system into a linear state-space representation 

establishes the essential framework upon which control strategies can be systematically formed with the precision 

required to achieve the predefined performance goals, all while necessitating the critical criterion of system stability. 

 

Let 𝑥 be a column vector representing the state,  

 

𝑥 =

[
 
 
 
 𝑞1

𝑞1̇

𝑞2

𝑞2̇]
 
 
 
 

 

Similarly let 𝑥̇ be a column vector representing the derivatives of the states, 

𝑥̇ =

[
 
 
 
 𝑞1̇

𝑞1̈

𝑞2̇

𝑞2̈]
 
 
 
 

 

 

The state space model is given by the form,  

𝑥̇  = 𝐴𝑥 + 𝐵𝑢 

Where 𝐴 is a matrix that represents the system's dynamics or the system matrix. It describes how the state variables 

change over time in the absence of control inputs. 𝐵 is a matrix that represents the effect of control inputs on the state 

variables. It describes how external inputs or control actions influence the evolution of the system's state. 𝑢 represents 

the control input or control action applied to the system. 𝐴 and 𝐵 are of interest as they can be used to calculate the 

control matrix for the model.  

 

Based on the aforementioned equilibrium values calculated above, a new state column vector is defined to account for 

the differing states as the error state vector,  

𝑥𝑒 =

[
 
 
 
 
 
𝑞1 − 𝑞1𝑒

𝑞1̇ − 𝑞1̇𝑒
𝑞2 − 𝑞2𝑒

𝑞2̇ − 𝑞2̇𝑒]
 
 
 
 
 

 

The Jacobian matrix of 𝑥̇ with respect to 𝑞1, 𝑞2, 𝑞1,̇ 𝑞2̇ and 𝜏 is calculated using the partial derivatives of each 

component. Firstly, the partials for the platform angular velocity,  

 

𝑞1 →
𝜕𝑞1̇

𝜕𝑞1

 

𝑞2 →
𝜕𝑞1̇

𝜕𝑞2

 

𝑞1̇ →
𝜕𝑞1̇

𝜕𝑞1̇

= 1  

𝑞2̇ →
𝜕𝑞1̇

𝜕𝑞2̇

= 0 

𝜏 =
𝜕𝑞1̇

𝜕𝜏
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Similarly for the gimbal angular velocity,  

𝑞1 →
𝜕𝑞2̇

𝜕𝑞1

 

𝑞2 →
𝜕𝑞2̇

𝜕𝑞2

 

𝑞1̇ →
𝜕𝑞2̇

𝜕𝑞1̇

= 0  

𝑞2̇ →
𝜕𝑞2̇

𝜕𝑞2̇

= 1 

𝜏 =
𝜕𝑞2̇

𝜕𝜏
 

For platform acceleration (1),  

𝑞1 →
𝜕𝑞1̈

𝜕𝑞1

=
𝑎3 cos(𝑞1)

𝑎3

 

𝑞2 →
𝜕𝑞

1̈

𝜕𝑞2

=
2𝑎1𝑞1̇𝑞̇2 cos(2𝑞2) − 𝑎2𝑞2̇𝑣𝑟𝑜𝑡𝑜𝑟 sin(𝑞2) (𝑎4 + 𝑎5 cos2(𝑞2)) + 𝑎5 sin(2𝑞2) (𝑎1𝑞1̇𝑞̇2 sin(2𝑞2) + 𝑎2𝑎2𝑞2̇𝑣𝑟𝑜𝑡𝑜𝑟 cos(𝑞2) + 𝑎3 sin(𝑞1))

(𝑎4 + 𝑎5 cos2(𝑞2))
2  

𝑞1̇ →
𝜕𝑞1̈

𝜕𝑞1̇

=
𝑎1𝑞2̇ sin(2𝑞2)

𝑎4 + 𝑎5 cos2(𝑞
2
)
  

𝑞2̇ →
𝜕𝑞1̈

𝜕𝑞2̇

=
𝑎1𝑞2̇ sin(2𝑞2) + 𝑎2𝑣𝑟𝑜𝑡𝑜𝑟 cos(𝑞2)

𝑎4 + 𝑎5 cos2(𝑞
2
)

 

𝜏 =
𝜕𝑞1̈

𝜕𝜏
= 0 

For gimbal acceleration (2),  

𝑞1 →
𝜕𝑞2̈

𝜕𝑞1

= 0 

𝑞2 →
𝜕𝑞

2̈

𝜕𝑞2
= 2𝑎6𝑞2̇ cos(2𝑞2) − 𝑎7𝑞1̇

𝑣𝑟𝑜𝑡𝑜𝑟 sin(𝑞2) 

𝑞1̇ →
𝜕𝑞2̈

𝜕𝑞1̇

= 𝑎7𝑣𝑟𝑜𝑡𝑜𝑟 cos(𝑞2)  

𝑞2̇ →
𝜕𝑞2̈

𝜕𝑞2̇

= 𝑎1 sin(2𝑞2) 

𝜏 =
𝜕𝑞2̈

𝜕𝜏
= 𝑎8 
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Based on the state base structure, the Jacobian matrix is then given as, 

[
 
 
 
 
 
 
 
 
 

𝜕𝑞1̇

𝜕𝑞1

𝜕𝑞1̈

𝜕𝑞1

𝜕𝑞2̇

𝜕𝑞1

𝜕𝑞2̈

𝜕𝑞1
 

𝜕𝑞1̇

𝜕𝑞2

𝜕𝑞1̈

𝜕𝑞2

𝜕𝑞2̇

𝜕𝑞2

𝜕𝑞2̈

𝜕𝑞2

𝜕𝑞1̇

𝜕𝑞1̇

 
𝜕𝑞1̈

𝜕𝑞1̇

𝜕𝑞2̇

𝜕𝑞1̇

𝜕𝑞2̈

𝜕𝑞1̇

𝜕𝑞1̇

𝜕𝑞2̇

 
𝜕𝑞1̈

𝜕𝑞2̇

𝜕𝑞2̇

𝜕𝑞2̇

𝜕𝑞2̈

𝜕𝑞2̇

𝜕𝑞1̇

𝜕𝜏
𝜕𝑞1̈

𝜕𝜏

 
𝜕𝑞2̇

𝜕𝜏
𝜕𝑞2̈

𝜕𝜏 ]
 
 
 
 
 
 
 
 
 

 

For readability the equations for these derivatives are not substituted in this report, but can be referenced from above. 

The solved equilibrium values (Table 1) are then substituted which yields the 𝐴 matrix. The 𝐵 matrix is calculated 

using the same reasoning where its Jacobian is given by, 

[
 
 
 
 
 
 
 
 

𝜕𝑞1̇

𝜕𝜏
𝜕𝑞1̈

𝜕𝜏
𝜕𝑞2̇

𝜕𝜏
𝜕𝑞2̈

𝜕𝜏 ]
 
 
 
 
 
 
 
 

 

Establishing 𝐴 and 𝐵 enables the calculation of the necessary control matrices used as inputs of the system.  

 

4. Control Matrices  

The gimbal torque is defined as the control input or control action applied to the system, 𝑢, such that, 

𝑢 = −𝐾𝑥 

( 3) 

Where 𝐾 represents the control gain matrix. Ackermann’s method is used for this calculation. 

 

Ackermann's formula, also known as the pole placement method, is a technique used to calculate the control gain 

matrix 𝐾 for a linear time-invariant control system. The goal is to place the closed-loop poles of the system at desired 

locations, [𝑎, 𝑏, 𝑐, 𝑑], to achieve the desired system behaviour. 

 

Firstly, the controllability matrix, 𝑊, is calculated by,  

𝑊 = [𝐵, 𝐴𝐵, 𝐴2𝐵, . . . , 𝐴𝑛−1𝐵] 
Where 𝑛 is the dimension of the state vector 𝑥, and the function represents the concatenation of the columns of these 

matrices, such that in this case, 

𝑊 = [𝐵,𝐴𝐵, 𝐴2𝐵, 𝐴3𝐵] 
Verify that the rank of the controllability matrix is equal to the number of state variables, 4. The system is therefore 

controllable. Following this, the desired characteristic polynomial 𝑝(𝑠) is constructed based on the desired pole 

locations [a, b, c, d] given by, 

𝑝(𝑠) = (𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)(𝑠 − 𝑑) 

Extracting the relative coefficients yields the matrix 𝑃 such that,  

𝐾 =  [0, 0, 0, 1] 𝐶−1 𝑃 4 

 

Using this value in (3) completes the requisite computations for effecting control over the CMG model as outlined. 

 

 

 
4 Ackermann’s Formula 
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5. Exploration  

While it is possible to replicate this computation through code-based simulations, it is imperative to underscore the 

significance of grasping the underlying mathematical framework for maximizing the efficacy of the resultant 

simulation. Being cognisant of the functionality of each constituent element and their interconnections enables 

valuable discernment into the practical implications of the theoretical foundation. 

C. Numerical Analysis with Python 

The computations described previously have now been transcribed into Python code, facilitating their integration with 

the model for conducting simulations. The following walks through each implementation, significant portions of the 

code have been redacted for readability purposes5. 

 

Firstly, the variables are defined to be used as global variables in the following code, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
5 The complete code can be reviewed by the sister Jupyter file submitted with this report 

J_1z = 0.5                  # m^2 one principal moment of inertia of the 

platform 

J_2x = J_2z = 0.001         # kgm^2 two principal moments of inertia of 

the gimbal 

J_3x = J_3y = J_3z = 0.01   # kgm^2 principal moments of inertia of the 

rotor 

m = 1.0                     # kg the mass of the boom 

r = 2.0                     # m the length of the boom 

g = 9.81                    # ms^-2 the acceleration of gravity 

v_rotor = 500               # rad/s angular velocity of the rotor 

 

a_1 = -J_3y+(2*J_3z) 

a_2 = 2*J_3y 

a_3 = -2*g*m*r 

a_4 = 2*J_1z+2*J_2z+2*m*r*r 

a_5 = 2*J_3z 

a_6 = (J_3y-J_3z)/(2*(J_2x+J_3x)) 

a_7 = -J_3y/(J_2x+J_3x) 

a_8 = 1/(J_2x+J_3x) 
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The class, StateSpaceModel, that represents a state-space model for the modelled dynamic system. It calculates 

symbolic equations for the system's state derivatives, Jacobian matrices, and provides methods to evaluate them 

numerically at specified equilibrium values that are passed for initialisation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The utilised evaluate_jacobians_at_equilibrium function provides the 𝐴 and 𝐵 matrices used by the next class.  

 

 

 

 

 

 

 

 

class StateSpaceModel: 

    def __init__(self, q1_val,  q1_dot_val, q2_val, q2_dot_val, tau_val): 

        # Define symbolic variables 

        ... = symbols('...’) 

         

        # Assign the symbolic variables to instance variables 

        self.q1 = q1 

        ... 

        # Calculate q1_double_dot and q2_double_dot using symbolic equations 

        self.q1_double_dot = self.calculate_q1_double_dot(...) 

        self.q2_double_dot = self.calculate_q2_double_dot(...) 

 

        # Create a symbolic matrix for the state derivatives 

        self.state_dot = Matrix([...]) 

 

        # Define equilibrium values as a dictionary 

        self.equilibrium_values = { 

            self.q1: q1_val, 

            ... 

        } 

 

        # Create a symbolic matrix for the state errors 

        self.state_error = Matrix([[…] for var, eq_val in self.equilibrium]) 

 

        # Calculate Jacobian matrices symbolically 

        self.A_matrix = jacobian([q1, q1_dot, q2, q2_dot]) 

        self.B_matrix = jacobian([tau]) 

 

        # Lambda functions for numerical evaluation 

        self.A_evaluator = lambdify([...], self.A_matrix) 

        self.B_evaluator = lambdify([...], self.B_matrix) 

     

    # Define symbolic equations for q1_double_dot and q2_double_dot 

    def calculate_q1_double_dot(self, q1,  q1_dot,q2, q2_dot, tau): 

        ... 

        return q1_double_dot 

 

    def calculate_q2_double_dot(self, q1,  q1_dot,q2, q2_dot, tau): 

        ... 

        return q2_double_dot 

 

    # Evaluate Jacobian matrices at equilibrium values 

    def evaluate_jacobians_at_equilibrium(self): 

        ... 

        return A_at_eq, B_at_eq 
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The class ClosedLoopController for the closed-loop control system calculates the feedback control matrix 𝐾 to 

achieve desired pole locations, computes the closed-loop matrix 𝐴_𝑐𝑙, checks the stability of the closed-loop system, 

and calculates the controllability matrix 𝑊 for the given system. The class is passed the 𝐴, 𝐵 and the poles at each 

instance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The function is_stable checks that all the eigenvalues of the calculated matrix are less than zero therefore affirming 

that the system is asymptotically stable at that point. The calculate_controllability_matrix function is used to verify 

that the rank matches the state size and thus confirm the system is controllable. The function used for modelling 

calculate_feedback_matrix uses Pythons’ control library to calculate 𝐾 to be assigned such that it can be called.  

 

 

 

 

 

 

 

class ClosedLoopController: 

    def __init__(self, A, B, desired_poles): 

        # Initialize the class with system matrices A and B, and desired poles 

        self.A = A 

        ... 

         

        # Calculate the feedback control matrix K using desired poles 

        self.K = self.calculate_feedback_matrix() 

         

        # Calculate the closed-loop matrix A_cl 

        self.A_cl = self.calculate_closed_loop_matrix() 

         

        # Calculate the eigenvalues (poles) of the closed-loop matrix 

        self.poles = self.calculate_closed_loop_poles() 

         

        # Calculate the controllability matrix W 

        self.W = self.calculate_controllability_matrix() 

 

    def calculate_feedback_matrix(self): 

        # Calculate the feedback control matrix K using desired poles 

        return control.acker(self.A, self.B, self.desired_poles) 

 

    def calculate_closed_loop_matrix(self): 

        # Calculate the closed-loop matrix A_cl as A - B*K 

        return self.A - self.B @ self.K 

 

    def calculate_closed_loop_poles(self): 

        # Calculate the eigenvalues (poles) of the closed-loop matrix A_cl 

        return np.linalg.eigvals(self.A_cl) 

     

    def is_stable(self): 

        # Check if all closed-loop poles are stable (have negative real parts) 

        for pole in self.poles: 

            if pole > 0: 

                return False 

        return True 

 

    def calculate_controllability_matrix(self): 

        # Calculate the controllability matrix W 

        n = self.A.shape[0] 

        ... 

 

        for i in range(n): 

            # Calculate the controllability matrix using matrix powers 

            W[:, i * m:(i + 1) * m] = np.linalg.matrix_power(self.A, i) @ self.B 

 

        return W 
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The Controller class designates the control input for modelling the CMG. The primary function is run that updates 

the feedback on each iteration, responsible for calculating the control action (gimbal torque) based on the given inputs. 

 

 

 

 

 

 

 

 

 

 

 

Firstly, run constructs a state vector x containing the platform and gimbal angles and velocities. It then creates an 

instance of a StateSpaceModel class to then call evaluate_jacobians_at_equilibrium on the StateSpaceModel instance 

to obtain the state-space matrices 𝐴 and 𝐵 and uses them for control calculations. A 𝐶𝑙𝑜𝑠𝑒𝑑𝐿𝑜𝑜𝑝𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 instance 

named t𝑒𝑚𝑝_𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 is then created with the obtained matrices and a desired set of poles6 that should be equal to 

the eigenvalues of the corresponding gain matrix. The stability of each iteration is displayed to ensure that the system 

is asymptotically stable approaching the equilibrium points. In addition, it then calculates the gimbal torque by 

multiplying the control gain matrix 𝐾 from temp_controller by the state vector and extracts the torque value from the 

result, thus completing the feedback loop. 

 

The remainder of the code processes the relevant data for application in the simulation and draw numerical and 

graphical results.  

 

1. Exploration  

In the context of the future of physics, computational proficiency emerges as an indispensable skill. The capacity to 

swiftly manipulate extensive datasets and generate real-time simulations holds the key to unlocking avenues for 

enhancing both individual and collective understanding. Traditional mathematical theory, while indispensable in its 

own right, often falls short in vividly illustrating the implications of control parameter variations, a deficiency notably 

mitigated by code-based simulations. 

 

 

 

 

 

 
6 Reasoning for these values discussed in following sections 

class Controller: 

    def __init__(self): 

        # Initialize any controller-specific variables here 

        ... 

     

    def reset(self): 

        # Reset any controller-specific variables here 

        ... 

 

    def run( 

            self, 

            t, 

            platform_angle, 

            platform_velocity, 

            gimbal_angle, 

            gimbal_velocity, 

        ): 

        x = array([platform_angle, ...]) 

        model = StateSpaceModel(np.deg2rad(0),0,0,0,0) 

        A,B = model.evaluate_jacobians_at_equilibrium() 

        temp_controller = ClosedLoopController(A, B, [-1,-2,-3,-4]) 

        print(temp.conroller.is_stable()) 

        gimbal_torque = np.dot(-temp_controller.K,x)[0] 

         

        return gimbal_torque 
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IV. Simulation Results  

A. Ideal Parameters  

Following a series of experimental iterations, the optimal plot configuration was determined utilising the specified 

parameters, 

 

PARAMETER  VALUE 

INITIAL ANGLE  30° 
TARGET ANGLE 0° 
DESIRED POLES [−1,−2,−3,−4] 

Table 2: Ideal parameters for stabilisation 

These values yield the following results: A snapshot from the end of the simulation showing the platform at rest at the 

target angle,  

 

 

 

 

 

 

 

 

 

 

To better visualise how the system resolved to this final state the variable plots can be reviewed, 

 

 

 

 

 

 

 

 

 

 

 

Fig.  2 Snapshot of final ideal parameter position 

Fig.  3 Graph of state variables from ideal parameters 
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This demonstration serves to show the successful operation of the CMG controller as envisioned. The platform's 

angular motion exhibits a controlled oscillation characterized by progressively diminishing amplitudes centred around 

the desired target angle, ultimately converging to and stabilising at the target angle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Throughout the duration of the simulation, the system exhibited asymptotic stability. It is worth highlighting that the 

initial angular position closely approximated the desired target angle. 

 

1. Exploration  

The observed success of the controller in specific scenarios presents an encouraging prospect. It suggests the potential 

for a broader application of control principles when the CMG system is generalised. This outcome sheds light on the 

prospect of extending these findings into the realm of real-world control systems, where the principles and insights 

gained from this study may find wider and more versatile applicability. 

B. Testing Angle Limits 

Systematic investigation of graphical representations generated at varying angles relative to the target angle affords 

valuable insights into discernible patterns, which, in turn, may provide crucial indications regarding the model's 

inherent limitations.  

 

 

At an initial angle of ten degrees, the platform angle exhibits behaviour closely resembling the ideal parameters. It 

undergoes a smooth oscillatory motion, converging towards the target angle before reaching a state of equilibrium. 

This stabilisation process is notably swift, concluding approximately seven seconds earlier than when the initial angle 

is set at thirty degrees. 

Fig.  4 Output terminal displaying the result from is_stable function 

Fig.  7 Graph of state variables at 

initial angle of 10 deg 

Fig.  6 Graph of state variables at 

initial angle of 40 deg 

Fig.  5 Graph of state variables at 

initial angle of 50 deg 
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In contrast, when the initial angle is increased to forty degrees, the platform's stabilisation becomes protracted, 

requiring a duration of approximately fourteen seconds. Moreover, the oscillation pattern deviates from smoothness, 

characterized by abrupt jerking motions as the CMG attempts to stabilise evidenced by the rougher platform angle 

waveform. A similar trend is observed when the initial angle is further elevated to fifty degrees, with the stabilisation 

process elongating to approximately twenty seconds and exhibiting more erratic behaviour along its path towards 

equilibrium. 

 

When subjected to a sixty-degree initial angle, the system exhibits a notable inability to attain equilibrium within a 

reasonable time frame. Observations indicate erratic behaviour in the gimbal mechanism, which further complicates 

stabilisation efforts. 

 

Upon elevating the initial angle to ninety degrees, not only does the system fail to stabilise, but it also displays a 

discernible divergence from equilibrium. This divergence is indicated in the platform angle waveform, as evidenced 

by an increasing wave amplitude. Additionally, the resultant torques demonstrate minimal indications of effective 

control under these more extreme conditions. 

 

When commencing the angle from negative thirty degrees from the target angle or 330 degrees, the CMG system 

demonstrates a capacity to return to equilibrium. At all tested angles, the system remained asymptotically stable.  

 

The system failed to stabilise at 180 degrees, even with initial angles closely approximating this target angle.  

 

1. Exploration  

This demonstrates the influence of the starting conditions on the system's dynamic response, suggesting a potential 

avenue for control optimisation in challenging operational scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  10 Graph of state variables at 

initial angle of 60 deg 

Fig.  9 Graph of state variables at 

initial angle of 90 deg 

Fig.  8 Graph of state variables at 

initial angle of 330 deg 
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C. Testing Pole Limits 

 

 

Increasing the magnitude of the system's poles marginally yields equilibrium, albeit lacking the desired smoothness 

seen by the ideal poles. Indeed, the gimbal's behaviour becomes erratic, causing substantial perturbations on the 

platform angle waveform. 

 

Conversely, when adjusting the pole magnitudes to more closely align with equilibrium values, the CMG system 

experiences an alarming loss of control. Notably, the gimbal angle diverges, signifying an incapacity to achieve 

stabilisation. 

 

Further experiments involving a substantial pole magnitude deviation from equilibrium shows the gimbal angle 

exhibiting similar divergent behaviour, but in the positive direction. Notably, the platform angle shows no sign of 

oscillation and appears to stabilise around a different angle. 

 

Figures 11 and 12 depict pronounced deviations in rotor velocity, despite their intended constancy. These deviations 

can be interpreted as indications of controller instability, with the PID controller succumbing to inaccuracies induced 

by the pole adjustments. At all tested angles, the system remained asymptotically stable. 

 

1. Exploration  

The vast spectrum of potential pole values presents a complex landscape, wherein discerning optimal choices through 

a trial-and-error approach proves to be an inefficient and impractical strategy for thoroughly exploring the spectrum 

of compatibility. The need for a more systematic and informed approach to navigate this range becomes evident, as 

the effectiveness of the control system crucially depends on precise pole value selection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  13 Graph of state variables at 

desired poles [-4,-5,-6,-7] 

Fig.  12 Graph of state variables at 

desired poles [-0.1,-0.2,-0.3,-0.4] 

Fig.  11 Graph of state variables at 

desired poles [-10,-20,-30,-40] 
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D. Adjusting Constants  

To further establish the CMGs functionality, observations can be made to value adjustments of the constants defined 

at the beginning of the file.  

 

1. Boom mass 

Assuming ideal parameters,  

 

At a specified boom mass of 10kg, the system demonstrates a notably accelerated stabilisation process compared to 

the configuration with a 1kg boom mass. However, this expeditious stabilisation comes at the cost of platform angle 

waveform smoothness. 

 

When the boom mass is substantially increased, an intriguing scenario unfolds. While the system initially appears to 

stabilise, further analysis reveals complications. There is a discernible loss of rotor velocity consistency, and 

conflicting indications regarding the equilibrium angle become apparent. These observations collectively suggest a 

breakdown in the control system, signifying that the controller could no longer maintain the desired performance 

under the altered boom mass conditions. 

Fig.  15 Graph of state variables at boom mass 

10kg 

Fig.  14 Graph of state variables at boom mass 

1000kg 
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2. Rotor Velocity  

Assuming ideal parameters, 

 

When subjected to a rotor velocity of 2500 rad/s, the CMG system exhibits outcomes similar to the scenario involving 

a substantial boom mass. In this configuration, rotor velocity deviation becomes apparent, and the equilibrium angle 

diverges from the initial input, culminating in a breakdown of the controller's functionality. 

 

In contrast, when the rotor velocity is reduced to 50 rad/s, the platform angle has a smoothly oscillating waveform. 

However, an intriguing challenge emerges, as the gimbal mechanism seems to lack the requisite torque to effect 

significant alterations in the trajectory toward equilibrium.  

 

3. Transitioning Between Equilibrium Angles  

Assuming ideal parameters, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  17 Graph of state variables at rotor velocity 

2500 rad/s 
Fig.  16 Graph of state variables at rotor velocity 

50 rad/s 

Fig.  18 Graph of state variables at initial 

angle 180 degrees and final 0 degrees 
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Extensive experimentation involving various pole configurations led to a consistent observation that there was no 

scenario in which the CMG system achieved stabilisation or indeed, approached equilibrium. In every instance, the 

controller ultimately failed, though the timing of these failures did vary across different configurations. However, it 

is vital to emphasise that these observed limitations should not be construed as definite. Rather, they underscore the 

inherent challenges related to the constraints discussed in the 'Pole Exploration' section.  

 

4. Exploration   

The dichotomy between stability and smoothness highlights the intricate relationship between factors and system 

performance, stressing the delicate balance required for effective control in such dynamic scenarios. 

V. Conclusion  

A. Differences Between Linear Model and Nonlinear Simulation 

Linear models, by nature, are abstractions crafted to approximate the behaviour of inherently nonlinear systems around 

specific operating points. Their validity is contingent upon operation within a confined range, and they are intrinsically 

constrained in their capacity to accurately depict system behaviour when the system operates significantly distant from 

the equilibrium point. 

 

Nonlinear systems frequently show complex behaviours which lie beyond the descriptive capacity of linear models. 

The presence of these nonlinear elements within a system can result in deviations from the predictions theorised by 

linear models.  

 

This conclusion became apparent through the empirical findings, where the model exhibited signs of degradation and 

erratic behaviour as inputs were progressively moved away from their equilibrium points. 

B. Supporting Questions  

An empirical investigation into the impact of initial conditions and the selection of goal angles was conducted within 

the mathematical background and results sections of this study. The outcomes revealed a pronounced volatility of the 

system to variations in initial conditions, with optimal performance occurring exclusively when the initial conditions 

closely aligned with equilibrium and ideal parameters. Additionally, it was observed that the system exhibited stability 

solely at two specific goal angles, thereby imposing constraints on the scope of the simulation and its testing 

boundaries. 

C. Model Viability  

The findings presented in this report underscore a critical aspect that, while conditions leading to system stabilisation 

do exist, the challenges associated with identifying these conditions, coupled with the preponderance of unsuccessful 

scenarios, cast doubt on the practical viability of this model in real-world applications. Essential factors, such as the 

need for smooth, payload-protecting movements, appear to be achievable only within a limited set of conditions. 

Additionally, the imperative need for rapid orientation adjustments and sustained stability, pivotal in real-world 

control scenarios, becomes exponentially more challenging as the system deviates from its equilibrium points. These 

observations collectively highlight the inherent limitations and complexities associated with the practical 

implementation of this model. 

D. CMG Viability and Model Conflict   

In the realm of spacecraft control, single-gimbal CMGs offer a distinct advantage over reaction wheels through torque 

amplification, the potential for significantly higher output torques. This characteristic empowers CMGs to generate 

substantial torques while maintaining relatively low power consumption. As a result, they emerge as a compelling 

choice for extended space missions, particularly those with strict power and weight limitations, such as 

geosynchronous satellites, larger spacecraft, and interplanetary probes.  

 

The utilisation of CMGs necessitates the implementation of advanced control strategies to harness their full potential. 

These strategies often involve intricate feedback control algorithms as a means to attain precise and agile attitude 

control. The operational success of CMGs is intrinsically tied to the robustness of these control algorithms, as they 

must contend with a multitude of real-world challenges, including disturbances, uncertainties, and nonlinearities. 

 



18 

 

Regrettably, the model presented in this report did not encompass the nuanced complexities of these control 

algorithms. Consequently, it did not account for the critical aspect of algorithmic robustness required for effective 

CMG operation in practical scenarios. 

 

It is worth noting that the computational intricacies and algorithmic modifications necessary to enhance system 

robustness extend beyond the scope of this report. Nevertheless, one promising avenue for future research and 

extension of this work lies in a comprehensive exploration of these optimisation characteristics.  

E. Reflection  

Being a double major in computer science and aerospace engineering, I find myself drawn to the intersection of these 

fields. This report represents my initial step into practical applications within this area, offering me valuable insights 

into its intricacies and challenges. 

 

What is most gratifying is the tangible impact that well-designed algorithms can have, especially in the context of 

spacecraft control systems. This report has not only expanded my technical knowledge but has also ignited a deep 

sense of fulfilment, seeing how algorithms can translate into real-world results. 

 

Furthermore, this experience has intensified my curiosity and passion for delving further into the realm of computer-

aided numerical analysis in the context of control systems. It has solidified my resolve to pursue a career that allows 

me to explore the depths of aerospace engineering and advance the field of control systems with practical 

implementations. 


